
~ )  Pergamon Int. J. Heat Mass Transfer. Vol. 39, No. 8, pp. 1639-1647, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
00l~9310/96 $15.00+0.00 

0017-9310(95)00258--8 

Convection and stability in a 
layer with alternating direction 

body force 

rotating porous 
of the centrifugal 

P. V A D A S Z  

Department of Mechanical Engineering, University of Durban-Westville, 
Private Bag X54001, Durban 4000, South Africa 

(Received 10 March 1995 and in final form 28 June 1995) 

Abstract--An alternating direction of the centrifugal body force results when the axis of rotation is placed 
within the boundaries of a rotating fluid saturated porous layer. The onset of thermal convection and 
stability in a fluid saturated porous layer prevailing such conditions is investigated analytically. The 
marginal stability criterion was evaluated in terms of a critical centrifugal Rayleigh number and a cor- 
responding cr:Ltical wave number. The effect of the offset distance of the layer's cold wall from the axis of 
rotation on tl~Le convection is analyzed, showing that the critical centrifugal Rayleigh and wave numbers 
increase significantly as the layer's cold wall moves away from the rotation axis. This leads eventually to 
unconditional stability when the layer's hot wall coincides with the rotation axis. This unconditional 
stability prevails when the axis of rotation moves away from the porous domain, so that the imposed 
temperature gradient opposes the direction of the centrifugal acceleration. Significant effects on the con- 
vection pattern are identified as a result of the rotation axis location. 

1. I INTRODUCTION 

The problem of  corwection and stability in rotating 
porous media has a focal interest following theor- 
etical, as well as l:,ractical, relevance of  transport 
phenomena in rotating porous media to applications 
in engineering and igeophysics [1, 2]. Gravity driven 
convection in rotating porous media was investigated 
[3-7] for a single fluid or binary mixture. The cen- 
trifugal acceleration as a driving body force in gen- 
erating free convection was considered by Vadasz [1] 
to present a three-dimensional solution for the case 
when the temperature gradient, resulting from the 
imposed conditions on the boundary,  is perpendicular 
to the centrifugal body force. The solution focused 
on the effect of  the Coriolis force on the basic free 
convection for high values of  Ekman number. When 
the temperature gradient resulting from the imposed 
boundary condition:s is collinear with the centrifugal 
body force, a stabil!kty problem is to be formulated. 
Vadasz [8] presented the solution to this stability 
problem for porous layers adjacent to the axis of 
rotation. The corresponding stability analysis and 
solution for a porou,; layer placed an arbitrary positive 
distance from the center of  rotation was presented by 
Vadasz [9], where a singularity in the solution associ- 
ated with negative values of  the offset distance from 
the axis of  rotation was identified. It is this resulting 
singularity and its consequences which forms the 
objective of  the present investigation. As this occurs 
at negative values of  the offset distance from the axis 

of  rotation it implies that the location of  the rotation 
axis falls within the boundaries of  the porous domain 
(or to the left side of  the cold wa l l - - a  case of  little 
interest due to its inherent uncondit ional stability). 
This particular location of  the rotation axis causes 
positive values of  the centrifugal acceleration on the 
right side of  the rotation axis and negative values on 
its left side. The objective of  the investigation is to 
establish the stability condition, i.e. the critical cen- 
trifugal Rayleigh number, the critical wave number 
and the corresponding eigenfunctions for different 
locations of  the axis of  rotation within the boundaries 
of  the porous domain. 

2. PROBLEM FORMULATION 

A narrow fluid saturated porous layer subject to 
rotation is placed such that the axis of  rotation lies 
within the boundaries of  the fluid domain. The layer 
is heated on the right wall, cooled on the left wall and 
the remaining walls are insulated. The cold wall is 
therefore placed a dimensionless distance x0 from the 
center of  rotation as presented in Fig. 1. The offset 
distance is presented in a dimensionless form rep- 
resenting the ratio between the dimensional offset dis- 
tance and the length of  the porous layer in the form 
Xo = Xo./L.. Two systems of  coordinates are pre- 
sented in Fig. 1, the first (x', y ' ,  z') is linked to the axis 
of  rotation and the second (x, y, z), placed a horizontal 
distance x0 apart  from the first one, belongs to the 

1639 



1640 P. VADASZ 

NOMENCLATURE 

H the front aspect ratio of the porous x0 
layer, equals H , / L ,  

W the top aspect ratio of the porous layer, x 
equals W , / L ,  

~x unit vector in the x direction y 
~y unit vector in the y direction 
~ unit vector in the z direction z 
~, unit vector normal to the boundary, 

positive outwards x '  
H ,  the height of the layer 
k ,  permeability of the porous domain y'  
L ,  the length of the porous layer 
Mr a ratio between the heat capacity of the 

fluid and the effective heat capacity z' 
of the porous domain 

M the rank of the Galerkin 
approximation 

p reduced pressure generalized to 
include the constant component of the 
centrifugal term (dimensionless) 

0~e, 
q dimensionless filtration velocity fl 

vector, equals u~:, + V~y + w~ 
Ra,o porous media centrifugal Rayleigh //* 

number related to the contribution of the ~2 
horizontal location within the porous 6~ 
layer to the centrifugal acceleration, q~ 
equals ]~,ATcfo 2 ,L2k,Mf/~ze,v, 09, 

R scaled centrifugal Rayleigh number, v, 
equals Ra~,/rc 2 x 

T dimensionless temperature, equals #* q, 
(T,-  Tc)/(T.- TO ATe 

Tc coldest wall temperature 
TH hottest wall temperature 
u horizontal x component of the 

filtration velocity 
v horizontal y component of the 

filtration velocity 
w vertical component of the filtration 

velocity 
W, the width of the layer 

the dimensionless offset distance from 
the rotation center, equals xo, /L ,  
horizontal length coordinate, in the 
layer's system of coordinates 
horizontal width coordinate, in the 
layer's system of coordinates 
vertical coordinate, in the layer's 
system of coordinates 
horizontal length coordinate, linked to 
the rotation axis system of coordinates 
horizontal width coordinate, linked to 
the rotation axis system of 
coordinates 
vertical coordinate, linked to the 
rotation axis system of coordinates. 

Greek symbols 
a parameter related to the wave 
number, equals xz/z~ 2 
effective thermal diffusivity. 
a parameter, equals (1/2-Ix01) 
thermal expansion coefficient 
a parameter, equals 256/81n 4 
Kronecker delta function 
porosity 
angular velocity of the rotating box 
fluid's kinematic viscosity 
wave number 
fluid's dynamic viscosity 
stream function 
characteristic temperature difference. 

Subscripts 
* dimensional values 
c characteristic values 
cr critical values 
C related to the coldest wall 
H related to the hottest wall 
t transition value. 

porous layer coordinates. As the axis of rotation lies 
within the boundaries of the porous domain the value 
of x0 is not positive. It is therefore convenient to 
introduce this fact into the problem formulation, 
specifying explicitly that x0 = -IXo[. A positive tem- 
perature gradient in the x-direction is anticipated as a 
result of the imposed thermal boundary conditions. 
The centrifugal acceleration is collinear with the tem- 
perature gradient, however, its direction alternates 
depending on the location within the porous layer. At  
the right of the rotation axis the centrifugal accel- 
eration is positive, while at its left it becomes negative. 

The front aspect ratio of the layer is defined as 
H = H , / L ,  where H ,  and L ,  are the height and the 
length of the layer, respectively. The top aspect ratio 
is W = W,/L , ,  where W, is the width of the layer. 
The following analysis is confined to a narrow layer, 
i.e. W << 1. Free convection may occur as a result of 
the centrifugal body force while the gravity force is 
neglected. The only inertial effect considered is the 
centrifugal acceleration, as far as changes in density 
are concerned. Other than that, the Darcy's law is 
assumed to govern the fluid flow (extended to include 
the centrifugal acceleration), while the Boussinesq 
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Fig. 1. A rotating fluid saturated porous layer having the rotation axis within its boundaries and subject 
to different temperatures at the sidewalls. 

approximation is applied for the effects of density 
variations. As a narrow layer is considered, i.e. W << 1, 
a Cartesian coordinate system can be used and the 
component of the centrifugal acceleration in the y 
direction can be neglected. Under these conditions the 
following dimensior]ess set of governing equations is 
obtained : 

V 'q  = 0 (1) 

q = - V p  - Ra~, [ x -  Ix0 I] T~x (2) 

OT 
~ -  + q ' V T  = V2T. (3) 

Equations (1)-(3) are presented in a dimensionless 
form. The values cte,/L,Mf, #,ato,/k,Mf, and ATe = 
(TH-- Tc) are used to scale the filtration velocity com- 
ponents (u,, v,, w,), pressure (p,), and temperature 
variations (T,--Tc) ,  respectively, where ~o, is the 
effective thermal diffusivity, p ,  is the fluid's viscosity, 
k ,  is the permeability of the porous matrix and Mf is 
the ratio between the heat capacity of the fluid and 
the effective heat capacity of the porous domain. The 
length of the layer L,  was used for scaling the vari- 
ables x, ,  y ,  and z,. Accordingly, x =  x , / L , ,  
y = y . / L ,  and z :: z , / L , .  In equation (2) one 
observes the centrifngal Rayleigh number defined by 

Ra~, = fl,ATcm~dL2,k, Mf/~ze,v,. 

An additional controlling parameter appears in the 

equations representing the offset distance from the 
center of rotation, i.e. Ix01. 

As all the boundaries are rigid the solution must 
follow the impermeability conditions there, i.e. 
q ' ~  = 0 on the boundaries, where ~n is a unit vector 
normal to the boundary. The temperature boundary 
conditions are: T = 0 a t x = 0 ,  T = I  a t x = l  and 
VT" ¢~n = 0 on all other walls representing the insu- 
lation condition on these walls. 

The partial differential equations (1)-(3) form a 
nonlinear coupled system which, together with the 
corresponding boundary conditions, accepts a basic 
motionless conduction solution. The establishment of 
the conditions of stability of this basic solution is the 
objective of this analysis. 

3. METHOD OF SOLUTION 

A basic motionless solution in the form 

t b = 0  T b = x  

PD = --Rao[lXolX2/2+x3/3]+const. (4) 

satisfies the governing equations an the boundary con- 
ditions. Therefore the solution is presented as the sum 
of this basic solution and small perturbations in the 
form 

q = q b + q '  T =  TD + T' P = PD +P', (5) 

where the (') stands for perturbed values. Substituting 
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equations (4) and (5) into the governing equations 
(1)-(3), and linearizing the result by neglecting terms 
which include products of perturbations which are 
small, yields the following set of linear partial differ- 
ential equations for the perturbations 

V. q' = 0 (6) 

q" = --Vp'--Ra,o[x--lxol]T'~x (7) 

[ ~ - V 2 ] T ' + u '  = 0. (8) 

Applying twice the curl operator on equation (7) 
and using the property of q' being a solenoidal vector 
which comes out from equation (6), eliminates the 
pressure from the system of equations (6)-(8). The 
remaining coupling between the temperature and fil- 
tration velocity perturbations in the resulting equa- 
tions can be resolved, leading to one equation for the 
temperature perturbations in the form 

(9) 

Assuming an expansion into normal modes in the 
y and z directions, i.e, T' = A~O(x) C'+~% y÷~:~ yields 
the following ordinary differential equation for 0 

[(D 2 - x  2 - f f ) (D  2 --to 2) - Ra~,(x-  Ix01)~2]0 = 0, 

(10) 
where D - d/dx, x2 = K~ + ~c~ and xy, Xz are the wave 
numbers in the y and z directions, respectively. 

The Galerkin method is adopted to solve equation 
(10). Consequently O(x) is expanded in a series of 
orthogonal trial functions C~m(X) which satisfy the 
boundary conditions in the form 

M 

O(X) = Z am~m(X)" ( 1 1 )  
m = l  

The principle of exchange of stabilities holds for 
this problem and at marginal stability a = 0. Upon 
substitution of expansion (11) into equation (10), one 
can multiply the resulting equation by ~b~(x) and inte- 
grate over the length of the domain to obtain 

a,,,[ I ~ dpi(D4 - 2x2 D2)dpm dx 
,~=1 Ldo 

+(x4 + Rao, lxolxZ ) ~p,,d?~dx 

Io ] -- Rao?c 2 Xdpm~idx = 0. (12) 

In the particular case considered here, the choice 
~bm = sin (mrcx) proved to be a trial function which 
satisfies the necessary conditions. Upon substitution 
of this trial function into equation (12) and per- 
forming the integrals, a homogeneous set of linear 
algebraic equations is obtained in the form 

[(m2 +~)2 --~flR] T 
m = l  

4R~mi ] 
+ (m2_iz)2nzfm+i,2p_l a,, = 0 (13) 

for i = 1, 2, 3 . . . .  , M, where the following scaling and 
notation was introduced for convenience 

R Ra,, l( 2 1 
= - -  ~ = /3 = ( ~ - I x 0 1 ) .  ( 1 4 )  n2 ~S 

In equation (13) 6~ is the Kronecker delta function 
and the index p can take arbitrary integer values ; it 
stands only for setting the second index in the 
Kronecker delta function to be an odd integer. Equa- 
tion (13) has the form ~-(am) = O, representing a homo- 
geneous linear system accepting a non-zero solution 
only for particular values of R such that 
det [n_(a,,)] = 0. 

4. RESULTS AND DISCUSSION 

Although the research on these values of R and 
more particularly on the critical ones, has been done 
by solving (13) up to the rank M = 11 for different 
values of Ix01, useful information can be drawn by 
considering the approximation to rank M = 2. For 
this rank of approximation the system reduces to two 
equations which are expressed in the following matrix 
representation : 

[((1 + ~)2 -~/3R)/2 ; 8Rc~/9rr 2 l[a,l=0 
8R~/9n 2 ; ((4+ ~)2 _ R~/3)/2J La2J 

(15) 

Taking the determinant of equation (15) and equa- 
ting it to zero leads to the characteristic values of R 
in the form 

fl[(l+a)2+(4+e)2]+\/f12[(l+~)2+(4+~)212-4(/32-72)(l+~)2(4+e)z 
R~= 2~(/3z-72) , (16) 
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where ~,2= 256/8b~4. A singularity is observed in 
equation (16) whe, n [ /2= 72. This singularity cor- 
responds to / / =  7 or /3 = - 7 -  Since /3 is uniquely 
related to the offset distance Ix0[ and 7 = 16/9~2 is a 
constant, one can relate the singularity to specific 
values of  Ix0[, namely Ix0l = (9n 2 -  32)/18~ 2 = 0.3199 
and Ix01 = (9~z2+32)/187z 2 =  0.680. The first value 
Ix01 = 0.3199, corresponds to the transition from two 
positive roots of  equation (16) for R~ when 
Ixol < 0.3199, to one positive root and one negative 
root of  equation (16) for Re, when Ix0[ > 0.3199. This 
transition is of  no significant consequence to the estab- 
lishment of  the stability criterion. The second value of  
Ix01 = 0.680, corresponds to the transition from one 
positive root and one negative root of  equation (16) 
for Re, when 0.31o9 < Ix01 < 0.68, to two negative 
roots for R~, when Ix01 > 0.68. Therefore the second 
transition has significant consequences in establishing 
the stability condition, as for Ix01 >i 0.68 no positive 
roots Re of  equation (16) exist. This implies an uncon- 
ditional stability of  the basic solution (4) (i.e. all 
modes of  perturbations decay) for all values of  R if 
Ix01/> 0.68. This transition value of  Ix01 was inves- 
tigated at higher ranks leading to Ix01 ~> 0.765 at 
rank M = 3. At any rank M an Mth  order algebraic 
equation is obtained by equating the determinant of  
the linear system l_(a,,) = 0 (given by equation (13)) 
to zero, in the form 

CMRM+CM_~R M ~.q- . . .  +c3 R3 +c2 R2 + C l R  

+Co = 0. (17) 

The transition value of  Ix01 was found to cor- 
respond to the condit ion causing the reduction of  
the order of  equation (17) by one, i.e. to cM = 0. 
Accordingly, the transition values Ix01 for different 
ranks were evaluat,ed and are presented in Table 1. 
F rom the table it can be observed that the transition 
value of  Ix01 associated with the existence of  uncon- 
ditional stability, increases with increasing the rank. 
It is clearly established that unconditional stability 
exists for Ix01/> 1, as this represents the case when the 
imposed temperature gradient opposes the direction 
of  the centrifugal ac,zeleration for all values o f x  within 
the domain. Al though the existence of  a smaller tran- 
sition value of  Ix01 causing unconditional stability was 
not definitely excluded, the indications are that as 
the rank increases, the transition value of  Ix0[ tends 
towards the limit wJue  of  1. 

The characteristic curves of  Rao,.c as a function of  x 
were established at rank M = 11 by using Mathema- 
tica T M  [10] for symi)olic as well as numerical compu- 
tations. The results in terms of  Ra~o/n 2 as a function of  

. . . . .  Ix01.0.25 ~--~ \ 
40 ' 1  " '  I - - 1 ° 1 = o . 3 5 J  \, \ 

30 - - '~ " ~+  . . . . . .  }~-'" . . . . . . . . .  
e ~  25 ............... "<. rv--~ .................... ~ ....... -~ ...... 

10 . . . . . . . . . . . .  

0 ~ 
0 0.5 1.5 2.5 

l~/rC 

Fig. 2. The characteristic curves representing the marginal 
stability limit for different values of ]Xol. 

x / z  for values of Ix0[ varying between Ix0[ : 0 and Ix0l 
= 0.4 are presented in Fig. 2. Fo r  ix01 = 0 the criti- 
cal value of  Ra~o.cr = 7.81n 2, as presented by Vadasz 
[8], was reconfirmed. The results for Rer vs Ix0[ are 
presented in Fig. 3 in order to observe the effect of  
Ix01 on the critical values of  Raw. A significant increase 
in the critical values of  Raw as Ix01 approaches the 
limit value of  1, is observed from Fig. 3. A logarithmic 
scale was used in Fig. 3a to present the results of  Rcr 
over the whole range of  values Ix01 ~ [0, 1], while a 
linear scale is used in Fig. 3b to present Rer over 
the limited range of  Ix01 ~ [0, 0.5]. The critical wave 
number increases significantly as Ix01 increases, par- 
ticularly for values of  Ix01 higher than 0.4, as can be 
observed from Fig. 4. This means that convection cells 
become shorter in the z direction if the aspect ratio is 
maintained constant as Ix01 increases. 

Once the critical values of  Rao~ and ~c are evaluated, 
the results can be used to calculate the ratio between 
the coefficients in the series equation (11). Since the 
linear stability does not  allow for the evaluation of  
the amplitude of  convection, the coefficient al can 
be absorbed into the definition of  the amplitude A=, 
therefore leaving in the series the ratios b m = a,=/a~ 
V rn = 1, 2 . . . . .  M, where bl = 1 by definition. Evalu- 
ating the coefficients, b,,, up to rank M = 11 for 
different Ix01 values becomes essentially the problem 
of fnd ing  an eigenvector belonging to the system 
l-(am) = 0 and corresponding to the singular operator  
1_. This means that the required eigenvector is associ- 
ated with a zero eigenvalue of  the operator  1_. This 
procedure was applied by using Mathematica T M  [10]. 
Insignificant discrepancies between the values of  bm at 
different ranks were identified for values of Ix01 below 
0.5. However,  as Ix01 increased beyond 0.5 significant 

Table 1. Transition values of Ix0l for different ranks of M 

M 2 3 4 5 6 7 8 9 10 11 

Ix0[, 0.680 0.765 0.815 0.847 0.8695 0.886 0.899 0.9097 0.918 0.925 
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Fig. 3. The variation of the critical values of the centrifugal 
Rayleigh number as a function Ix01. 
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discrepancies between different ranks were observed, 
leading to sufficiently accurate results at rank M = 11. 
The values of bm as evaluated at rank M = 11 were 
eventually used for presenting the results. 

When the layer's extension in the z and y directions 
is finite, as in the case presented in Fig. 1, the cor- 
responding values of~z = nn/Hand K, = in/Wreplace 
the wave numbers in the z and y directions, respec- 
tively. Then for convective rolls having axes parallel 
to the shorter dimension (i.e. y) the eigenfunctions 
were evaluated and can be expressed in the form 

/nrtz\ 
T '=  A, c o s ~ - )  ~_lbmsin(mxx ) 

u,=_Ancos( ) 
× ~ bm m z+ rt zsin(mnx) (18) 

m=l  \ 

v * = O  

A . H .  [nnz'~ 
w ' =  nr~ sln~-ff-) 

~ 1  bm(mZ + (19) x nH--s)rn=3cos(mnx ). 

As v' = 0, a stream function can be used for pre- 
senting the results graphically. The complete solution 
for the temperature in terms of isotherms of 
T = Tb + T '  and for the flow field in terms of a stream 
function ~k, is presented in the form 

A . H . { n n z ' ~ (  n 2 ) 
$ =  - -  s i n / - - /  ~, bm m 2+  nn \ n ],, = l n 2 sin (mnx) 

(20) 

/nnz\ 
T = x + A ,  cos~-)=~= b,,sin(m~zx). (21) 

The results for the convective flow field are pre- 
sented graphically in Figs. 5-7 for different values of 
Ix01. The results as presented in Figs. 5-7, correspond 
to a value of A= = 0 . 2  and to an aspect ratio 
H = 4n/x¢r which allows an integer value of n = 4 at 
the critical value of x, corresponding to the respective 
value of Ix01. From Fig. 5 it can be observed that the 
effect of the location of the axis of rotation within the 
porous box is definitely felt. Keeping in mind that, to 
the right of the rotation axis the centrifugal accel- 
eration has a destabilizing effect, while to its left a 
stabilizing effect is expected, the results presented in 
Fig. 5b,c reaffirm this expectation, showing an eccen- 
tric shift of the convection cells towards the right side 
of the rotation axis. When the axis of rotation is 
moved further towards the hot wall, say at Ix01 = 0.6, 
as presented in Fig. 6a, weak convection cells appear 
even to the left of  the rotation axis. This weak con- 
vection becomes stronger as Ix01 increases, as observed 
in Figure 6b for Ix0] = 0.7. In Fig. 6b one can observe 
the formation of boundary  layers associated with the 
primary convection cells to the right of the rotation 
axis. These boundary layers become more significant 
for Ix0[ = 0.8, as represented by sharp stream lines 
gradients in Fig. 7a. When Ix01 = 0.9, as presented in 
Fig. 7b, the boundary  layers of the primary convection 
are well established and the whole domain is filled 
with weaker secondary, tertiary and further con- 
vection cells. The results for the isotherms cor- 
responding to values of Ix01 = 0., 0.5, 0.6 and 0.7 are 
presented in Fig. 8. The amplitude of the temperature 
perturbations used in Fig. 8a was A, = 0.2, in Fig. 8b 
A, = 0.1 in Fig. 8c A, = 0.08 and in Fig. 8d A, = 0.03. 
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Fig. 5. The convect ive f low field at marginal  stability for three different values o f  Ixol; 10 stream lines 
equally divided between I~min and ~ma~. (a) At  Ixol = 0: ~m~. = - 1 . 3 7 8 ;  ~bma x = 1.378, (b) at Ixol = 0.3; 

~k,~i. = - 1 . 5 8 6 ;  ~kmax = 1.586 and (c) at Ixol = 0.5: ~0m~. = - 2 . 7 9 7 ;  ~/max = 2.797. 
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divided between ~kmi~ and ~kmax- (a) At  Ixol = 0.6: I~min = - - 2 . 8 0 8 ;  ~/max = 2.808, and (b) at Ix01 = 0.7: 

~m~, = - -2 .666;  ~km~x = 2.666. 
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The effect of  moving the axis of  rotation within the 
porous box on the temperature field is evident from 
Fig. 8. 

5. CONCLUSIONS 

The effect of  the lo,zation of  the axis of  rotation on 
the convection and stability in a rotating porous layer 
subject to a centrifugal body force, was investigated 
analytically for the case when the rotation axis is 
placed within the bc,undaries of  the domain. As a 
result, an alternating direction of  the centrifugal body 
force is obtained leading to a stabilizing effect in the 
part of  the domain located to the left of  the rotation 
axis, and a destabilizing effect to its right. Significantly 
higher critical values of  the centrifugal Rayleigh num- 
ber and higher values of  the critical wavenumber result 
as the value of  Ix01 increases. The convection is 
affected significantly by the variation in the value 

of  Ix01. 
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